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The vibrational states experienced by the active components of a drilling
assembly such as that found in the oil or gas industry are discussed in the
context of an integrated mathematical model. The work is motivated by the
need to understand the complex vibrational states that such a system can
exhibit in order to better control their constructive and destructive potential.
The model is expressed in terms of six continuous independent degrees of
freedom. Three locate the position of the centroid of the drill-string in space
and three permit the dynamical state of the drill-string to be expressed in terms
of ¯exural, torsional and shear strain, together with dilation and stretch. By
supplementing the model with appropriate constitutive relations that relate
these strains to bending and twisting couples together with shear and
compression forces it can fully accommodate the modes of vibration that are
traditionally associated with the motion of drill-strings in both straight and
curved boreholes discussed in the engineering literature. These include axial
motion along the length of the drill-string, torsional or rotational motion and
transverse or lateral motion. Attention is given to the boundary conditions
appropriate for an active drill-string and BHA stabiliser including an account
of frictional simulations at the rock-interface, cutter simulations for di�erent
types of drill-bit and interactions between the bore cavity and the drill-string.
The model is used to discuss the stability of axisymmetric drill-string
con®gurations in vertical boreholes under both coupled torsional, axial and
lateral perturbations as well as general non-perturbative coupled vibrational
states under extreme conditions of lateral whirl.
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1. INTRODUCTION

This article develops a model for the dynamical behaviour of an active drilling
assembly as used in the oil or gas industry. It is motivated by the need to
understand the complex vibrational states experienced by such a system in order
to better control their constructive and destructive potential. A drilling assembly
consists essentially of a series of hollow cylindrical steel pipes connected to form
a long ¯exible drill-string to which is attached a short heavier segment containing
a cutting device at the free end (the drill bit). This segment may contain
stabilising ®ns designed to minimise lateral motion during drilling and together
with the drill-bit constitutes the bottom-hole assembly (BHA). The drill-string is
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driven in a rotary fashion from the top end, often by means of an electric motor
and gearbox, the top-drive, and constrained to pass at a controlled rate through
a rotating mass (the rotary) near the surface. Such a drilling system is designed
to construct a borehole linking the earth's surface to a reservoir of oil or gas.
The borehole is lined (usually with steel) and the excess in the diameter of this
cavity over the diameter of the drill-pipe is referred to below as the overgauge.
This annular gap (which in general varies along the bore-hole) is necessary for
the conduction of ¯uids. These are a source of external interaction along the
drill-string in addition to gravity and the bore-liner. During the process of
drilling, pressurised ¯uid (mud) is continuously circulated down the centre of the
drill-string, out of holes in the drill-bit and back to the surface via the space
between the rotating drill-string and the surface of the bore-hole. Its primary
purpose is to cool and lubricate the drill-bit as well as to remove cuttings
produced by the bit. Such a system is prone to dynamic instabilities that are not
fully understood. Field experience provides ample testament to the destructive
consequences of such instabilities.
Although there exists an extensive literature devoted to the analysis of distinct

aspects of the dynamics of the drill-string and BHA [1±3] it is only recently that
the virtues of treating the drilling assembly as an integrated system have been
considered. Since the physics involved is inherently non-linear and recourse to
modelling is inevitable to compensate for a lack of detailed dynamical
information in the vicinity of the bit, many conclusions have been based on
numerical simulations that ignore one or more aspects of the problem. In the
authors' view the lack of a coherent model in the literature that is free from
unwarranted assumptions makes it dif®cult to accurately assess the nature of
many approximate treatments and thereby to get a clear overview of the
signi®cance of model predictions. The approach here is to formulate a
mathematically well de®ned dynamical model that permits control of the
approximations involved, is not computationally over-expensive and has the
potential to accommodate the many complexities of a realistic drilling assembly
and its environment.
The motion of the drill-string may be described in terms of the motion in

space of the line of centroids of its cross-sections and its elastic deformations
about that line. The steel strings under consideration have a ratio of average
diameter to length of order 10ÿ5 (which is less than that of the average human
hair). Due to the earth's gravity their horizontal length differs from their vertical
length by between 1 and 2 m. This suggests that they can be effectively modelled
by elastic space-curves with structure. This structure de®nes the relative
orientation of neighbouring cross-sections along the drill-string. Specifying a unit
vector (which may be identi®ed with the normal to the cross-section) at each
point along the drill-string centroid enables the state of ¯exure to be related to
the angle between this vector and the tangent to the space-curve (Figure 1).
Specifying a second vector orthogonal to the ®rst vector (thereby placing it in
the plane of the cross-section) can be used to encode the state of bending and
twist along the drill-string. Thus a ®eld of two mutually orthogonal unit vectors
along the drill-string provides three continuous dynamical degrees of freedom
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that, together with the continuous three degrees of freedom describing a space-
curve relative to some arbitrary origin in space, de®ne a simple Cosserat rod
model. The dynamical equations of motion for these continuous six degrees of
freedom are presented in section 2 and this is the model adopted here for a drill-
string. Supplemented with appropriate constitutive relations and boundary
conditions it can fully accommodate the modes of vibration that are traditionally
associated with the motion of drill-strings in the engineering literature: namely
axial motion along the length of the drill-string, torsional or rotational motion
and transverse or lateral motion. These modes will be clearly de®ned in terms of
the model adopted here.
Although the model accommodates arbitrary displacements and deformations

its linearisations about various stationary con®gurations offer valuable guidance
for the attainment of stable drilling processes. The fully non-linear aspects of the
motion are however needed to appreciate the signi®cance of some of the most
important non-perturbative vibrational phenomena observed in the ®eld [4, 5].
These include torsional relaxation oscillations induced by non-linear frictional
torques between the drill-bit at the rock surface (torsional ``slip±stick''), axial
vibrations that induce the drill-bit to intermittently lose contact with the rock
surface (``bit-bounce''), whirling motion of the drill-string and the motion of the
bit in the borehole (bit and BHA-whirl).
Torsional ``slip±stick'' is often regarded as one of the most damaging modes

of vibration when drilling with low rotary speeds [6]. For a typical drill-string of
length around 5000 m such a torsional disturbance consists of a travelling
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Figure 1. The motion of a drill-string segment may be described in terms of the motion in
space of a vector R that locates the line of centroids (shown dotted) of the cross-sections of the
drill-string. Specifying a unit vector d3 (which may be identi®ed with the normal to the cross-
section) at each point along this line enables the state of ¯exure to be related to the angle between
this vector and the tangent R 0 to the centroid space-curve. Specifying a second vector d2 orthog-
onal to the ®rst vector (thereby placing it in the plane of the cross-section) can be used to encode
the state of bending and twist along the drill-string. Elastic deformations about the line of cen-
troids are then coded into the rates of change of R and the triad {d1, d2, d3= d16 d2} along the
drill-string. Thus a time dependent ®eld of two mutually orthogonal unit vectors along the drill-
string provides three continuous dynamical degrees of freedom that, together with the three con-
tinuous degrees of freedom describing the centroid space-curve relative to some arbitrary origin in
space (with ®xed inertial frame {i, j, k}), de®ne a simple Cosserat rod model.
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torsional pulse that bounces back and forth between the top rotary and the drill-
bit every few seconds periodically forcing the drill-bit to ``slip'' and ``stick'' for
extended periods at the rock surface. The amplitude of this torsional excitation
can be two to four times the target or average angular speed (typically between
30 and 150 r.p.m.) set by the top-drive and this can give rise to enormously
destructive ¯uctuating torques in the drill-string that, once out of control,
invariably cause damage to the bit or drill-string. Even small amplitude ``slip±
stick'' vibrations are thought to be a major cause of bit wear. Various control
techniques have been devised to combat this instability [7±11] but ®eld evidence
[12, 13] suggests that they often exhibit undesirable volatility thereby detracting
from their overall ef®ciency. In section 13 this feature is mentioned in the
context of the model under discussion and an alternative suggested.
In addition to these violent excitations that can lead to rapid failure in the

drilling operation there are more subtle vibrations that are thought to contribute
to fatigue crack growth leading to ultimate failure of components. These include
the transfer of energy between axial [14], lateral and torsional motion [15]
induced by the interactions of the drill-string and BHA with their environment.
The nature of such inter-mode coupling can be dramatically in¯uenced by
drilling strategies and initial conditions. Such interrelated phenomena demand a
fully integrated model capable of assessing the signi®cance of the boundary
conditions in the evolution of the model. The model formulated here offers such
an integrated description of the drilling process and provides boundary and
initial conditions for a solution to the ensuing quasilinear hyperbolic system of
partial differential equations in two independent variables.
In section 2 the mathematical formulation of the model is presented together

with appropriate junction and boundary conditions. This section also discusses
the constitutive equations needed to complete the equations of motion of the
drill-string. In the remaining sections particular solutions are discussed. These
include static solutions and the notion of ``weight on bit'', stability analyses,
non-perturbative torsional and axial vibrations and whirling solutions. In the
axially symmetric sector a discussion of linearisation stability is given and the
exact equations of motion are reduced to the solution of a system of ordinary
differential±difference equations. This provides a valuable approach to a
numerical simulation that is free from spatial discretisation and is thereby ideally
suited to study vibrational phenomena to higher frequencies than is possible with
traditional ®nite element techniques. Finally the restriction to axial symmetry is
released and a full simulation explored using a new numerical approach based
on a semi-implicit method applied to a system of stiff ordinary differential
equations.

2. EQUATIONS OF MOTION

The general mathematical theory of non-linear elasticity is well established.
The general theory of one-dimensional Cosserat continua derived as limits of
three-dimensional continua can be consulted in Antman [16]. The theory is
fundamentally formulated in the Lagrangian picture in which material elements
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of a rod labelled by s. The dynamical evolution of the drill-string with mass
density, s2 [0, L0] 74r(s), and cross-sectional area, s2 74A(s), is governed by
Newton's dynamical laws:

rA�R � n0 � f, @t�rI�w�� � m0 � R0 � n� 1 �1, 2�
applied to a triad of orthonormal vectors:

s 2 �0, L0� 74 fd1�s, t�, d2�s, t�, d3�s, t�g �3�
over the space-curve:

s 2 �0, L0� 74R�s, t�, �4�
at time t where n 0= @sn, _R= @tR, f and l denote external force and torque
densities respectively and s2 [0, L0] 74 I 74 rI is a drill-string moment of inertia
tensor. In these ®eld equations the contact forces n and contact torques m are
related to the strains u, v, w by constitutive relations. The strains are themselves
de®ned in terms of the con®guration variables R and dk for k=1, 2, 3 by the
relations:

R0 � v, d0k � u6 dk, _dk � w6 dk: �5±7�
The latter ensures that the triad remains orthonormal under evolution. The last
equation identi®es

w � 1
2

X3
k�1

dk6 _dk, �8�

with the local angular velocity vector of the director triad.
The general model accommodates continua whose characteristics (density,

cross-sectional area, rotary inertia) vary with s. For a system in which the
elastodynamics of the BHA are signi®cant one considers two coupled continua
with different elastic characteristics described by equations (1), (2) on 0E s< s0
and s0< sEL0 respectively, each subject to their associated constitutive
relations. One then matches the degrees of freedom at s= s0 according to a
junction condition describing the manner in which the drill-string is connected to
the BHA. For certain couplings (e.g., Oldham's joint [17]) the evaluation of
constraint forces and torques becomes important. If the characteristics change
discontinuously at some point (e.g., where the drill-bit interacts with the rock
base or drill-strings with different characteristics are joined together or with the
BHA) conditions on the contact forces and torques on either side, 2, of the
junction must be satis®ed. If a rigid body of mass M0 and rotary inertia tensor I0
is also attached to the point then discontinuous contact forces and torques
contribute to the equations of motion of such an attachment. In general for such
a junction at s= s0, the contact forces and couples are subject to the
discontinuity conditions:

n��s0, t� ÿ nÿ�s0, t� � F0�s0, t� �M0
�R�s0, t� �9�
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and

m��s0, t� ÿmÿ�s0, t� �G0�s0, t� � I0� _w�s0, t��: �10�
In these equations F0(s0, t) and G0(s0, t) denote the external forces and torques
acting at s= s0.
In view of the comments above about the relative spatial dimensions of drill-

strings in deep wells, in this article the BHA and rotary will be treated as mass
points with rotary inertia attached to the ends of the drill-string. The effects of
the BHA stabilisers will be modelled by boundary conditions (discussed below)
which constrain the direction of the tangent to the drill-string at the drill-bit.
To close the above equations of motion constitutive relations appropriate to

the active drill-string must be speci®ed:

n�s, t� � n̂�u�s, t�, v�s, t�, ut�s, t�, vt�s, t�, . . . , s�, �11�

m�s, t� � m̂�u�s, t�, v�s, t�, ut�s, t�, vt�s, t�, . . . , s�: �12�
These relations specify a ``natural'' reference con®guration (say t=0) with
strains U(s), V(s) such that

n̂�U�s�, V�s�, . . . , s� � 0, m̂�U�s�, V�s�, . . . , s� � 0: �13, 14�
A standard reference con®guration has R 0s(s, 0)= d3(s, 0), i.e.,

V�s� � d3�s, 0�: �15�
If this standard con®guration is such that R(s, 0) is a space-curve with Frenet
curvature k0 and torsion t0 and the standard directors are oriented so that
d1(s, 0) is the unit normal to the space-curve and d2(s, 0) the associated unit
binormal then

U�s� � k0�s�d2�s, 0� � t0�s�d3�s, 0�: �16�
This follows immediately from the de®nition (6) of u and the Frenet±Serret
equations [18] for the space-curve:

d03�s, 0� � k0�s�d1�s, 0�, d01�s, 0� � ÿk0�s�d3�s, 0� � t0�s�d2�s, 0�, �17, 18�

d02�s, 0� � ÿt0�s�d1�s, 0�: �19�
The use of a curved standard con®guration has immediate application to the
dynamics of drill-strings in curved bore-holes. These are used in long-reach
operations where under-sea exploration is initiated from land-based drilling rigs.
In some cases an initially vertical drill-string is guided into a horizontal
con®guration under the sea-bed for several kilometres. In this article attention is
restricted to vertical straight bore-holes and a space-curve with zero curvature
and torsion de®nes the natural unstressed con®guration of the drill-string. Thus
the reference state of the drill-string in the absence of gravity is {R(s, t)=ÿsk,
d1(s, t)= i, d2(s, t)=ÿj, d3(s, t)=ÿk} where s2 [0, L0]. The value of L0 is the
physical length of the unstressed drill-string in the absence of gravity.
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The simplest constitutive model to consider is based on Kirchoff constitutive
relations with shear deformation. Such a model exhibits a rich dynamical
behaviour that accommodates all the phenomena alluded to in the introduction.
The presence of arbitrary rotations relating the local director frame to the global
inertial frame renders the equations of motion inherently non-linear. One may
exploit the full versatility of the Cosserat model by generalising the Kirchoff
constitutive relations to include viscoelasticity and other damping, curved
reference states with memory and effects to prohibit total compression. Such
generalisations will be mentioned although not pursued in detail in this article.
As a prelude to casting all equations into dimensionless form it is useful to

introduce some natural scales that facilitate this exercise. For a drill-string with
Young's modulus of elasticity E and shear modulus G with (dimensions
[MLÿ1Tÿ2]) a natural unit of time is chosen to be T0=L0/c where c

2=E/r. This
suggests the introduction of the dimensionless evolution parameter Z= t/T0.
Similarly de®ning s= s/L0, where 0E sEL0, implies 0EsE 1.
Besides the global orthonormal Cartesian frame {i, j, k} the directors {d1, d2,

d3= d16 d2}, provide a local dimensionless oriented orthonormal director frame

{dk} (with dual basis
g
d�k�) in which to de®ne the components of the drill-string

rotary inertia tensor per unit reference length, (rI), (with dimensions [ML]):

�rI��s, t� � I1,1�s, t��df1�s, t�� 
 d1�s, t� � I2,2�s, t��df2�s, t�� 
 d2�s, t�

� I3,3�s, t��df3�s, t�� 
 d3�s, t� � I1,2�s, t��df1�s, t�� 
 d2�s, t�

� I2,1�s, t��df2�s, t�� 
 d1�s, t�, �20�
where the components are given as integrals over the cross-sectional area A(s):

I1,1�s, t� �
�
A�s�

ry2 dx ^ dy, I2,2�s, t� �
�
A�s�

rx2 dx ^ dy, �21, 22�

I3,3�s, t� �
�
A�s�

r�x2 � y2� dx ^ dy, �23�

I1,2�s, t� � I2,1�s, t� � ÿ
�
A�s�

rxy dx ^ dy: �24�

It will be assumed that the drill-string is a right-cylindrical shell and composed
of material with a uniform mass density r=r0 having an annular cross-section
of outer radius r0 and inner radius ri. Then

I1,1 � I2,2 � pr0�r4o ÿ r4i �=4, I3,3 � pr0�r4o ÿ r4i �=2, I1,2 � 0: �25±27�
In terms of the drill-string area moments K11= I11/r0 and K22= I22/r0 (with
dimensions [L4]) the torsional rigidity of the drill-string is D=G(K11+K22).
These considerations suggest the introduction of a natural torque unit G=GKaa/
L0 with dimensions [ML2Tÿ2] and transverse area moment Kaa=(K11+K22)
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together with a natural force unit EA with dimensions [MLTÿ2]. All quantities
will henceforth be scaled into dimensionless form using these natural scales. A
conversion table is given in Appendix 1 which also contains numerical data used
in subsequent simulations.
The dynamical equations of motion for the drill-string are now given in

dimensionless form as

RZZ � ns ÿ gk� f, ��rI��w��Z � ms � k�Rs6 n� � l, �28, 29�

@sdk � u6 dk, @Zdk � w6 dk, Rs � v, �30±32�

where k=EAL0/G for a drill-string with cross-sectional area A.
With

n � n1d1 � n2d2 � n3d3, m � m1d1 �m2d2 �m3d3, �33, 34�

v � v1d1 � v2d2 � v3d3, u � u1d1 � u2d2 � u3d3, w � w1d1 � w2d2 � w3d3,

�35±37�

the classical Kirchoff constitutive relations may be written in dimensionless form
as:

n1 � wv1, n2 � wv2, n3 � v2 ÿ 1, �38±40�

m1 � I11u1 � I12u2, m2 � I12u1 � I22u2, m3 � u3, �41±43�

where the dimensionless parameter w=G/E.
The generalisation of these relations to include viscoelasticity and a curved

drill-string requires the introduction of the dimensionless positive viscoelasticity
parameters {an1, an2, an3, am1, am2, am3} and the functions {s 74U2(s),
s 74U3(s)} de®ning the curvature and torsion of the reference space-curve:

n1 � w�v1 � an1v1Z�, n2 � w�v2 � an2v2Z�, n3 � �v3 � an3v3Z� ÿ 1, �44±46�

m1 � I11�u1 � am1u1Z� � I12�u2 ÿU2 � am2u2Z�, �47�

m2 � I12�u1 � am1u1Z� � I22�u2 ÿU2 � am2u2Z�, �48�

m3 � �u3 ÿU3 � am3u3Z�: �49�

The Kirchoff constitutive relations permit one to identify: ¯exural
strains� {u1, u2}; torsional strain� {u3}; shear strains� {v1, v2}; dilation
strain� {v3}; stretch� |v|, and relate them to: bending couples {m1, m2}; twisting
couple {m3}; shear forces {n1, n2}, tension or compression {n3} if v6 n=0.
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3. STATIC CONFIGURATIONS

A basic con®guration corresponds to a static (non-rotating) vertical drill-string
with the drill-bit either suspended in an empty bore-hole or in contact with the
rock surface at its base. If in contact the bit-reaction force on the drill-bit is
determined by the drilling engineer who controls the tension (or compression) in
the cable that is used to connect the drill-string to the drilling rig ®xed at the
surface. This bit-reaction force is known as the (static) ``weight-on-bit'' and is
clearly the difference between the weight of the complete drilling assembly and
the vertical force in the top cable. Varying this force whilst drilling is one of the
primary mechanisms that controls the drilling process. Since the initial ``weight-
on-bit'' is a valuable parameter in describing the initial conditions it is
worthwhile to make precise a class of static solutions to equations (28±43). In
terms of the global inertial frame {i, j, k} with k= i6 j vertical and origin at the
rotary, these solutions take the form:

R � Z�s�k, fd1�s, Z� � i, d2�s, Z� � ÿj, d3�s, Z� � ÿkg, �50, 51�
with v(s; Z)=Zs(s)K and hence n(s, Z)= (Zs(s)+1)k. In terms of the effective
scaled masses of the top-drive and BHA, mtop and mbit the solutions to the non-
trivial static equations

n�0, Z� ÿ mtopgk� Ftop�Z� � 0, ns�s, Z� ÿ gk � 0, ÿ n�1, Z� ÿ mbitgk� Fbit�Z� � 0,

�52±54�
can be written

Z�s� ÿ Z�0� � gs2=2� �gmtop ÿ 1ÿ f top�s, �55�
or equivalently

Z�s� ÿ Z�1� � g�s2 ÿ 1�=2� � f bit ÿ gmbit ÿ 1��sÿ 1�, �56�
where Ftop(Z)= f topk, Fbit(Z)= f bitk and

f bit � f top � g�1� mbit � mtop�: �57�
f bit is the magnitude of the static ``weight-on-bit''.* If the top force f top> 0 then
f bit is less than the total weight g(1+mbit+mtop) of the drill-string, drill-bit and
rotary and the top cable is in tension. If f top< 0 then f bit exceeds the total weight
and the top force is compressive. If f bit=0 then the force in the top cable just
supports the total weight implying a loss of contact of the drill-bit with the rock
surface. This will be referred to as a static hanging con®guration.
It is convenient to label solutions by dZ where Z(1)=ÿ1ÿ dZ. Then it

follows that

f bit � mbitg� g=2ÿ dZ, f top � mtopg� g=2� dZ, �58, 59�

*If the environment of the drill-string contains static ¯uid then the weight of the drill-string is
reduced by the buoyancy provided by the displaced ¯uid.
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and the drill-string exceeds its reference length if dZ> 0, is hanging vertically
from the top cable if f bit=0 with dZ=(2mbit+1)g/2 and is compressed if
dZ< 0. The state of stress in the static drill-string may change from tension to
compression if the neutral point s=s0� 1/2+ dZ/g given by n(s0, Z)=0 lies in
the range 0Es0E 1. Thus a static con®guration of a vertical drill-string may be
speci®ed by dZ. The constitutive relation (40) is designed for |dZ|5 1 otherwise
it would need modi®cation to prevent total compression or the inclusion of
plasticity. Such modi®cations are not relevant for drill-string systems.

4. BOUNDARY CONDITIONS

One assumes that the drill-string is connected to effective masses mtop and mbit
modelling the top drive and BHA respectively, and point rigid bodies with rotary
inertia tensors Jtop and Jbit modelling the rotary and drill-bit respectively. The
top-drive connection to the drill-string is located at s=0 and the drill-bit is
located at s=1. At these points, forces Ftop(Z) and Fbit(Z) and torques Ltop(Z)
act. The nature of these forces depends on the way the boundary conditions are
implemented. In some circumstances certain of their components may be
prescribed (e.g., by the frictional forces or drive torques in evidence) while other
components may be determined dynamically by the constraints in evidence (e.g.,
the way the stabilisers interact with the borehole in the BHA). The basic
boundary conditions that follow from the discontinuity relations (9), (10) are
then:

mtopR�0, Z�ZZ � n�0, Z� ÿ mtopgk� Ftop�Z�, �60�

�Jtop�w��Z�0, Z� � m�0, Z� � Ltop�Z�, �61�

at s=0 and

mbitR�1, Z�ZZ � ÿn�1, Z� ÿ mbitgk� Fbit�Z�, �62�

�Jbit�w��Z�1, Z� � ÿm�1, Z� � Lbit�Z�, �63�

at s=1. The implementation of these boundary conditions can be a matter of
some expediency in order to match the model as closely as possible with the way
in which an actual drilling process is executed. This is because the process is
essentially controlled by varying the magnitude of the tension in the cable
attached to the drill-string at the top, the voltage and current in the electric
motor that delivers the torque to the drill-string and the manner in which the
drill-string itself is lowered through the rotary to accommodate the penetration
of the bit into the rock. If the motion of the latter is prescribed so that

R�0, Z� � LT�Z�k, �64�
then the top constraining force is determined from:
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Ftop�Z� � mtopR�0, Z�ZZ ÿ n�0, Z� � mtopgk, �65�

in terms of the contact force n(0, Z). The electric motor is designed to deliver
torque that drives the entire drill-string towards a uniform (target) angular speed
O0. It also responds to signals from various control feedback devices that are
designed to expedite a smooth as possible evolution towards this target state. If
one assumes that the rotary is rotationally unconstrained and that the
transmission of the torque to the rotary is similarly unconstrained then the
torque boundary condition to be satis®ed at s=0 is

�Jtop�w��Z�0, Z� � m�0, Z� � Ltop�Z�: �66�

In this equation the control torque takes the form:

Ltop�Z� � TM�Z�d�3��0, Z� � lCCC�Z�: �67�
The standard control torque provided by the drive motor is

TM�Z� � kix�Z� � kpxZ�Z�, �68�
where

xZ�Z� � O0 � w3�0, Z� ÿ hTf�Z�, �69�
and h, ki, kp are positive control parameters. The most primitive system is an
angular speed-controller with h=0, l=0 and target speed |O0|. In so called
``soft-torque'' control systems h 6� 0, l=0 and Tf(Z) is derived from the output
Tc(Z) of some AC low-pass ®lter applied to the contact torque at (or near) the
rotary*:

Tf�Z� � ÿm3�0, Z� ÿ Tc�Z�: �70�
In reference [19] an alternative to conventional ``soft-torque'' control has been
proposed based on the recti®cation of travelling torsional waves on the drill-
string and its effectiveness in model simulations. This additional control with
l> 0 is de®ned by

CCC�Z� � w�0, Z� ÿ gm�0, Z� �71�
in the control torque above. The constant g depends on the speed of travelling
torsional waves and the torsional rigidity of the drill-string [19]. In the
simulations discussed in this article attention is restricted to the simplest speed-
controller with h=0, l=0.
In practice the rotary is constrained by bearings to rotate in a ®xed horizontal

plane. In vertical drilling this is orthogonal to the tangent to the drill-string as it
passes through the rotary. In these circumstances d3(0, Z) is replaced by 2k in
the control torque above and only the k component of (66) is imposed. The
constraint on the rotary can be modelled by Rs(0, Z) � i=0, Rs(0, Z) � j=0.

*In the simplest case TcZ(Z)=ÿoc(m3(0, Z)+Tc(Z)) for some cut-off angular frequency oc.
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These constraints imply the existence of constraining torques in Ltop(Z) in the i
and j directions which may be determined from the projection of (66) in these
directions.
The implementation of the boundary conditions at s=1 is more involved. In

addition to possible constraining torques on the BHA induced by the stabilisers
one has to take into account the effects of friction and forces induced by the
drill-bit in interaction with the rock surface. Furthermore as a result of cutting
activity the rock surface is itself mobile. The friction at the drill-bit may be
classi®ed into Coulombic and viscous type. The former is usually regarded as
dominant in drilling dynamics. Its characteristic feature is the variation with
relative motion which in general is restricted to a domain about zero where it
depends on the ambient forces [19±23]. In the following this behaviour will be
modelled on ®eld data. The Coulombic component of sliding and torque friction
will be parametrised by real valued functions of relative motion, m and F
respectively. The dynamics of the cutting process itself will be encoded into a
dynamical rock surface (parametrised by amplitudes rl,m(Z)) representing the
manner in which the drill-bit removes cuttings from this surface. The shape of
the surface is determined by these amplitudes and a dynamic function LB(Z) that
describes the penetration of the drill-bit into the rock formation. The bore-hole
is de®ned to be a right-cylinder of radius Rb and length LB(Z) capped at the
bottom with the dynamic surface S(Z).
With respect to a ®xed origin in space at the centre of the upper end of this

cylinder the surface S(Z) is described by the vector

r�y, f, Z� � �LB�Z� �
�����������������
R2
f ÿ R2

b

q
�k

� rf�y, f, Z�fsin y cosfi� sin y sinfj� cos ykg, �72�
where

rf�y, f, Z� � Rf �
X
l

Xm�1
m�ÿl

rlm�Z�fYm
l �y, f� ÿYm

l �a, f�g �73�

for some prescribed function LB(Z), rlm(Z)= rl,ÿm(Z) and Rf>Rb. The number of
spherical harmonics zYm

l (y, f) in the sum accommodates the detailed structure
of the cutting process. With sin a=Rb/Rf, the range aE yEp, 0EfE 2p
ensures that the rock surface matches the bore hole of radius Rb. If the spherical
harmonic sum is empty then the rock-bit interface is modelled by amoving spherical
cap of radius Rf and centre at a distance |LB(Z)|ÿ

�����������������
R2
f ÿ R2

b

q
vertically below the

origin. Clearly the greater the magnitude of Rf the greater is the average
curvature of the rock face in interaction with the drill-bit. The presence of
spherical harmonics can be used to model the different cutting characteristics of
tricone and polydiamond±crystalline drill-bits since they give rise to different
observed patterns at the rock face during drilling. For drilling with contact
between the drill-bit and surface S(Z) at s=1:

R�1, Z� � r�Y�Z�, F�Z�, Z� �74�
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where the dynamic functions Y(Z), F(Z) locate the position of the drill-bit on the
rock surface S(Z). As the drill-bit moves on S(Z) the direction of the normal
reaction varies and this in turn determines the magnitude of the frictional forces
and torques on it. Let {t1, t2, N} be a Darboux basis adapted to this surface with
unit normal direction N:

t1 � @yr, t2 � @fr, N � t16t2=jt16t2j: �75±77�
The orientation of N is chosen such that N �k> 0 in the lower spherical cap. The
motion of the bit in terms of Y(Z), F(Z) (and the normal bit reaction force
F bit

N (Z)) follows by solving

mbitR�1, Z�ZZ � ÿn�1, Z� ÿ mbitgk� Fbit�Z�, �78�

where

Fbit�Z� � F bit
N �Z�N�Y�Z�, F�Z�� � FbitT �Z� �79�

and

FbitT �Z� � ÿF bit
N �Z�H�F bit

N �Z��m�jRZ�1, Z�j�
RZ�1, Z�
jRZ�1, Z�j ÿ kRZ�1, Z�: �80�

The function m(|RZ(1, Z)|) is the prescribed coef®cient of Coulombic bit-rock
sliding friction as a function of relative lateral speed (with sgn(m(n))= sgn(n))
and k is the coef®cient of bit-rock viscous (Stokes) friction. The presence of the
term H(F bit

N (Z)) where H is the Heaviside function ensures a contact friction
interaction. The presence of the Stokes friction accommodates damping effect in
the environment including the hydrodynamic effects of the drilling ``mud''.
During evolution one solves for Y(Z), F(Z) and F bit

N (Z). When F bit
N (Z)=0 for

some Z, physical contact between the drill-bit and the rock surface is lost and the
boundary condition

mbitR�1, Z�ZZ � ÿn�1, Z� ÿ mbitgk �81�

becomes an equation for the three components of R(1, Z) in space until motion
intersects the rock surface again. This process can repeat and gives rise to the
phenomenon of ``bit bounce''.
In order to implement the torque boundary condition at s=1 one supposes

that the BHA stabilisers can be modelled by a constraint on the direction of the
drill-string. Let Q be a ®xed (time independent) unit vector in R3. (Then
Vÿ (V �Q)Q is perpendicular to Q for any V). Suppose the stabilisers on the
BHA constrain the tangent to the drill-string in the direction Q:

Rs�1, Z� ÿ �Rs�1, Z� �Q�Q � 0: �82�
Thus, with Q=ÿk:

Rs�1, Z� � i � 0, Rs�1, Z� � j � 0: �83, 84�
These stabiliser constraints are maintained by torques LQ(Z) on the BHA, where



136 R. W. TUCKER AND C. WANG

LQ(Z) �Q=0. With Q=ÿk this implies:
LQ�Z� � Lbit

x �Z�i� Lbit
y �Z�j: �85�

The torque boundary condition at the drill-bit must now include the
constraining torque LQ(Z) as well as the bit-torque friction Lbit(Z):

�Jbit�w��Z�1, Z� � ÿm�1, Z� � Lbit�Z� � LQ�Z�, �86�
where

Lbit�Z� � ÿF bit
N �Z�N�Z�H�F bit

N �Z��F�w�1, Z� �N�Z�� �87�
in terms of some prescribed bit-torque friction pro®le F with sgn(F (o))=
sgn(o). Thus the component of this equation in the direction Q must be
satis®ed:

�Jbit�w��Z�1, Z� �Q � ÿm�1, Z� � Lbit�Z� �Q: �88�
The components in the directions orthogonal to Q provide two equations for

the components of the constraining torques LQ(Z): With Q=ÿk these are:
Lbit
x �Z� � �Jbit�w��Z�1, Z� � i�m�1, Z� ÿ Lbit�Z� � i, �89�

Lbit
y �Z� � �Jbit�w��Z�1, Z� � j�m�1, Z� ÿ Lbit�Z� � j: �90�

5. INTERACTIONS WITH THE BORE CAVITY

During evolution the drill-string and drill-bit experience external forces and
torques in addition to gravity since both are con®ned by the sides of the bore-
hole and exposed to a dynamic hydrodynamic environment. In cases of excessive
¯exural excitation the drill-string or BHA may make contact at various times
with the side wall of the borehole. Such impacts may not be impulsive for the
drill-string. For example segments of differing length of the drill-string may
move in contact with the wall for certain periods of time. In such cases a friction
model for the body force in (1) can be developed which switches on along the
segment of the drill-string when it is in contact with the wall. This approach is
analogous to the frictional interaction of the drill-bit with the rock surface
discussed in the previous section. An alternative and simpler approach (which
also models the hydrodynamic environment in a crude manner) is to replace the
con®ning cavity by a cylindrically symmetric con®ning potential V(r, s). The
structure of the potential is designed to produce a powerful con®ning force
outside a range equal to the overgauge d. For the drill-string d�Rbÿ ro whilst
for the BHA it may be somewhat smaller. This models in a simple fashion the
®nite size of the drill-pipe and BHA and permits study of the drill-bit motion in
the vicinity of the cavity wall. Thus the contribution fc from the bore±cavity
interaction to the external force f on the drill-string is de®ned by
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fc�s, Z� � ÿr�V��R�s, Z�, s� �91�
in terms of some potential V(r, s). A suitable potential is, for some d(s):

V�r, s� � l0f�x=d�s��2 � �y=d�s��2gn, �92�
where r= xi+ yj+ zk, the variable l0 determines the strength of the potential
and the positive integer n determines its shape. In the simulations discussed
below a value of n=8 and a dimensionless d=1�7610ÿ5 is found to suitably
model this interaction.

6. FRICTION

The Coulombic component of friction between macroscopic surfaces depends
on the relative motion between surfaces in contact and the normal and
tangential components of force with respect to such surfaces [20]. The magnitude
of the normal force determines the magnitude of the ``kinetic'' frictional force or
torque when the relative motion is non-zero and the instantaneous tangential
force or torque determines the value of the ``static'' friction otherwise. It is well
known that the value of this static friction is not a smooth function of the
applied force or torque and that this often gives rise to relaxation phenomena or
intermittent motion [19, 21, 24].
A system that exhibits motion in which certain degrees of freedom are

constant for extended periods of time (ankylosis) can only be analysed in a
piecewise manner. Various continuous approximations to the behaviour of
Coulombic friction as a function of relative motion have been proposed in order
to circumvent the need for a piecewise analysis. As long as the difference
between the maximum static friction and the typical kinetic friction is not
excessive such continuous approximations are found to yield acceptable
alternatives [20, 23]. In the simulations considered in this article Coulombic
friction at the drill-bit is simulated by the four parameter expression:

F�v� � ABv�ab2 � b2 � B2v2�=�b2 � B2v2�
������������������
1� B2v2

p
: �93�

Note that

Lim
v7421F�v� � Av=jvj �94�

and

F�v� � ABv�1� a� ÿ AB3v3�ab2 � b2 � 2a�=2b2 �O�v5�:
In Figure 2 the parameters A> 0, B> 0, a> 0, b> 0 have been chosen along
with a typical ``weight on bit'' in order to display friction torque as a function of
rotational speed typical of drill-bits in the ®eld.
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7. THE AXI-SYMMETRIC SECTOR

The equations (28±32) with constitutive relations (44±49) admit exact solutions
with axial symmetry about the vertical of the form

d1�s, Z� � cos�F�s, Z��i� sin�F�s, Z��j, �95�

d2�s, Z� � sin�F�s, Z��iÿ cos�F�s, Z��j, �96�

d3�s, Z� � ÿk, R�s, Z� � ÿ�sÿ gs2=2� z�s, Z��k, �97, 98�
where F and x satisfy the system of wave equations:

c2Fss ÿ FZZ � am3FZss � 0, zss ÿ zZZ � an3zZss � 0: �99, 100�
The parameter c de®ned by c2=1/(I11+ I22) may be rescaled to the speed of
torsional wave propagation on the drill-string. Solutions to these equations may
be expected to describe a straight vertical drill-string, free of lateral excitation
and ¯uctuating interactions with the sides of the bore-hole.
In such an axi-symmetric con®guration the boundary conditions (60±63)

become

ÿzs�0, Z� ÿ an3zZss�0, Z� � FTz ÿ mtopg� mtopzZZ�0, Z� � 0, �101�

JT33FZZ�0, Z� ÿ Fs�0, Z� ÿ am3FssZ�0, Z� ÿ GT
z � 0, �102�
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Figure 2. The excitation of torsional relaxation vibrations leading to the phenomena of slip±
stick is determined by anti-damping characteristics induced by non-linear torque-friction between
the active drill bit and the rock formation. The above pro®le simulates the frictional torque
experienced in a typical ®eld operation.
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zs�1, Z� ÿ an3zZss�1, Z� � FBz ÿ mbitg� mbitzZZ�1, Z� � 0, �103�

JB33FZZ�1, Z� � Fs�1, Z� � am3FssZ�1, Z� ÿ GB
z � 0, �104�

where Ltop=GT
z k, L

bit=GB
z k, F

top=FTz k and Fbit=FBz k.
In the following analysis of this section viscoelastic damping in the drill-string

is neglected, avscn3=0, avscn3=0 and the torsional friction at the drill-bit is
denoted by GB

z =ÿTW(FZ(1, Z)) where W implies that the function TW is
parameterised by the magnitude of the normal reaction of the drill-bit on the
rock.
The top-torque regulator

GT
z � kp�O0 ÿ FZ�0, Z�� � ki�O0Zÿ F�0, Z�� �105�

is designed to drive the system to the stationary solution

F̂�s, Z� � O0Zÿ TW�O0�sÿ TW�O0�=ki: �106�
However this con®guration may be unstable under small torsional ¯uctuations
due to the non-linear structure of TW. The linearised torsional system is obtained
by substituting

F�s, Z� � F̂�s, Z� � ef�s, Z� �107�
into (99), (102) and (104). Then to order e the system is determined by

fZZ ÿ c2fss � 0, JT33fZZ�0, Z� ÿ fs�0, Z� � kfZ�0, Z� � kif�0, Z�, �108, 109�

JB33fZZ�1, Z� � fs�1, Z� � T 0W�O0�fZ�1, Z� � 0: �110�
Particular linearised modes correspond to solutions of the form:

f�s, Z� � �fc cosh�ms=c� � fs sinh�ms=c��emZ, �111�
where m is a complex root of the real transcendental equation:

c tanh�m=c�

� �JT33 � JB33�m2 � �kp � T 0W�O0��m� ki
JT33J

B
33m

3 � �T 0W�O0�JT33 � kpJB33�m2 � �cÿ2 � kiJB33 � kpT 0W�O0��m� kiT 0W�O0� :

�112�
This has in®nitely many solutions for m that are either real or occur in complex
conjugate pairs. For each solution mj a non-trivial eigenmode with components
fc(mj) and fs(mj) can be determined and the general solution is

f�s, Z� �
X1
j�1

Cj�fc�mj� cosh�mjs=c� � fs�mj� sinh�mjs=c��emjZ: �113�
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The complex constants Cj may be determined from the initial angular state and
angular speed along the drill-string. An analysis of the location of the mj in the
complex plane as a function of the parameters that appear in (112) offers
guidance for stable drilling con®gurations (Re mj< 0). If the ``weight on bit'' W
is assumed to be the difference between the total weight suspended by the top
cable and the average tension in this cable (independent of the axial vibrations in
the drill-string and constant) then the axial and torsional equations decouple.
The linear stability of the torsional sector can then be explored as a function of
average ``weight on bit'' and the target rotary speed O0 used by the torque motor
controller [25]. A typical stability plot that exhibits the severity of local
instabilities is shown in Figure 3.
It is clear that the high frequency torsional modes are given approximately by

mn �2npc �114�
for large integers n. In the low frequency limit the roots approximately satisfy
the fourth order polynomial.

�JT33m2 � kpm� 1� ki��JB33m2 � T 0W�O0�m� 1� ÿ 1 � 0: �115�
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Figure 3. The active drill system can excite an in®nite number of characteristic vibrational
modes. The frequency and lifetime of mode instabilities are encoded in the roots of the character-
istic system associated with a linearisation about a stationary target con®guration. The ®gure dis-
plays the pure torsional vibrational spectrum for typical base parameters as a function of target
rotary speed and ``weight-on-bit'' (wob) The scales on the horizontal axes are chosen so that the
point (1,1) corresponds to a value of 100 kN for the weight on bit and 90 r.p.m. for the target
rotary speed. Each axis is then scaled in terms of these units. The grey domains indicate the
absence of excitable unstable modes and correspond to ``safe'' drilling con®gurations. The vertical
blocks indicate the presence of unstable torsional vibrations. The height of each block indicates
the reciprocal of the life-time (in seconds) of the most unstable mode in this domain.
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This corresponds to the limit in which the propagation of linearised torsional
waves along the drill-string is assumed to be instantaneous,

F�s, Z� ' a�Z� � s�b�Z� ÿ a�Z�� �116�
and the system becomes modelled by a pair of torsional pendulums [26] coupled
by a torsional spring and with frictional torque TW(bZ)= WF (bZ):

JT33aZZ�Z� � a�Z� ÿ b�Z� ÿ GT
z � 0, JB33bZZ�Z� ÿ a�Z� � b�Z� ÿ GB

z � 0:

�117, 118�
The linearised axi-symmetric sector is a useful guide in setting up simulations

with the non-linear equations (117) and (118). These display the manner in
which the instabilities manifest themselves as torsional relaxation oscillations
(Figure 4).
However the boundary conditions at s=1 provide an inevitable coupling

between the axial and torsional sectors since the reaction at the bit W � FBz (Z) is
dynamic. This in¯uences the torque friction at the drill-bit and couples equations
(99) and (100) through TW in (103) and (104). A numerical simulation based on
the techniques to be introduced in the next section reveals that assuming the
axial and torsional sectors to be independent becomes increasingly suspect as the
average ``weight on bit'' increases during the drilling process [27].
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Figure 4. This ®gure displays the angular speed of the top-drive (full curve) and drill-bit
(dotted curve) in r.p.m. as a function of time (s) from solutions to equations (117) and (118).
The drill-bit clearly exhibits torsional relaxation oscillations becoming intermittently arrested
every few seconds despite the top-drive maintaining a steady rotary speed after initial transient
¯uctuations.
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8. REDUCTION TO DIFFERENTIAL DELAY EQUATIONS

The neglect of retardation effects due to the continuum nature of the drill-
string implies that simulations based on the equations (117) and (118) above
may misrepresent torsional relaxation vibrations and their interaction with the
axial motions of the drill-string. In particular the duration of torsional ``stick''
is expected to be in¯uenced by both these features. To investigate this, one is
confronted with solving the partial differential equations (99) and (100) subject
to the time dependent boundary conditions (101±104). The traditional
approach to this problem is via some spatial discretisation or ®nite element
approximation that reduces the partial differential equations to a ®nite system
of coupled ordinary differential equations. However for the axially symmetric
con®gurations under discussion the general solution of the linear wave
equations can be expressed in terms of functions of a single variable and an
alternative approach is to substitute these solutions into the boundary
conditions. This transforms the initial boundary value problem for the wave
equations into an initial problem for a ®nite system of retarded differential±
difference equations. That the original Cauchy problem can indeed be replaced
by the integration of such a system relies on being able to translate the
Cauchy data for the partial differential wave equations into suitable initial
data for the retarded differential±difference system. The method used to effect
this is outlined in Appendix 2. The result is that the Cauchy problem for n
linear wave equations of the form

�fk ÿ b2kf00k � 0, k � 1, . . . , n, �119�
with in general different propagation constants {bk}, subject to coupled
dynamical boundary conditions (that may themselves be coupled to degrees of
freedom Fj(Z) satisfying another ordinary differential system), can be replaced
by a system of non-linear retarded differential±difference equations of the
form:

XZ�Z� � F�F j�Zÿ 1=bj�, Fk�Z��, �120�

where {X}� {F j, Fj} is speci®ed (via the Cauchy data for fk) on ÿmin{1/
bj}E ZE 0. Solutions X(Z) for Z> 0 permit construction of Lk(Z) and Rk(Z)
where

fk�s, Z� � Lk�s� bkZ� � Rk�sÿ bkZ�: �121�
Methods [28, 29] for solving (120) involve ``leap frogging'' data on ®nite
intervals forward in time. One of the advantages of this approach is that ®ne
structure in the solutions found by numerical simulation is limited only by
convergence criteria on the temporal discretisation step-length. The method is
therefore ideally suited to explore the effects of travelling waves in the drill-
string in the presence of relatively high frequency axial vibrations. As a result
of taking into account torsional retardation effects due to the ®nite size of the
drill-string, torsional ``slip-stick'' phases generally exhibit longer periods of
``stick'' than in similar situations where the continuum nature of the drill-
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string is ignored. This is readily understood in terms of the ®nite time required
to exchange torsional kinetic energy between the top-drive and BHA along the
drill-string. The intensity of axial vibrations that can arise in the presence of
torsional wave excitation of the drill-string may be estimated from Figures 5±
8. These are produced from a single simulation based on the techniques given
in Appendix 2 for the solution of the system of equations (120).

9. FLEXURAL STABILITY

The drill-string is also prone to lateral excitations as a perturbation analysis
about the static con®guration (50), (51), (55) reveals. Substituting

R�s, Z� � eX�s, Z�i� �gs2=2ÿ s� eZ�s, Z��k, �122�

d1 � i� eY�s, Z�k, d2 � ÿj, d3 � ÿk� eY�s, Z�i �123±125�
into (28±32), (44±49) yields equations for axial, lateral and ¯exural waves:

�@2=@Z2�Z�s, Z� ÿ �@2=@s2�Z�s, Z� ÿ an3�@3=@Z@s2�Z�s, Z� � 0, �126�
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Figure 5. Variation of the vertical oscillatory component of the speed of the drill-bit as a func-
tion of time (s) as described by solution of the delay±differential system 120. The increase in axial
vibration is induced by a change of rock lithology from sandstone to granite.
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Figure 6. Variation of the total torque (kft-pdls) experienced by the drill-bit as a function of time
(s) as described by a solution of the delay-differential system 120. The variation is induced by a com-
bination of axial activity in the drill-string producing a ¯uctuating force on the drill-bit and torsional
relaxation oscillations induced by the frictional torque between the drill-bit and the rock face.
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Figure 7. Variation of the vertical acceleration (in g) of the drill-bit as a function of time (s) as
described by solution of the delay±differential system 120. The increase in axial vibration is
induced by a change of rock lithology from sandstone to granite.
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Y�s, Z��sgÿ 1�k�w� sgÿ wsg� ÿ kwan1�sgÿ 1�2�@=@Z�Y�s, Z�
ÿ an1kw�sgÿ 1��@2=@Z@s�X�s, Z� � I22am2�@3=@Z@s2�Y�s, Z�
� I22�@2=@s2�Y�s, Z� ÿ I22�@2=@Z2�Y�s, Z� � k�w� sgÿ wsg��@=@s�X�s, Z�
� 0, �127�

Y�s, Z�g�wÿ 1� � w�@2=@s2�X�s, Z� � wan1�@=@ZY�s, Z��g
� an1w�sgÿ 1��@2=@Z@s�Y�s, Z� ÿ �w� sgÿ wsg��@=@s�Y�s, Z�
ÿ �@2=@Z2�X�s, Z� � wan1�@3=@Z@s2�X�s, Z� � 0: �128�

If the viscoelastic damping and gravitational weight terms proportional to g are
neglected equations (139) and (140) may be decoupled resulting in the traditional
Euler±Bernoulli±Kelvin beam equation for small lateral de¯ections [30±32]:

I22w�@4=@s4�X�s, Z� � wk�@2=@Z2�X�s, Z�
ÿ I22�1� w��@4=@s2@Z2�X�s, Z� � I22�@4=@Z4�X�s, Z� � 0: �129�
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Figure 8. Variation of rotary speed (r.p.m.) of the top-drive speed controller as a function of
time (s) as described by a solution of the delay±differential system (120). The controller is set to
attain a target speed of 30 r.p.m. but as a result of severe torsional relaxation oscillations is
unable to absorb torsional kinetic energy incident on the top rotary table. This is the type of
destructive behaviour that additional top-torque controllers are designed to ameliorate.
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As in the section above, the linearised boundary conditions lead to a coupled
root analysis that determines the nature of lateral and axial stability about the
static con®guration.

10. ROTARY-SYNCHRONOUS WHIRL

The stability analysis can be extended to include axial, lateral, torsional and
¯exural excitations of the drill-string. To this end it is useful to parameterise the
orthonormal directors by the three Euler angles f, y, c:

d1�s, Z� � �cos�c�s, Z�� cos�y�s, Z�� cos�f�s, Z�� ÿ sin�c�s, Z�� sin�f�s, Z���i
� �cos�c�s, Z�� cos�y�s, Z�� sin�f�s, Z�� � sin�c�s, Z�� cos�f�s, Z���j
ÿ cos�c�s, Z�� sin�y�s, Z��k, �130�

d2�s, Z� � �ÿ sin�c�s, Z�� cos�y�s, Z�� cos�f�s, Z�� ÿ cos�c�s, Z�� sin�f�s, Z���i
� �ÿ sin�c�s, Z�� cos�y�s, t�� sin�f�s, Z�� � cos�c�s, Z�� cos�f�s, t���j
� sin�c�s, Z�� sin�y�s, Z��k, �131�

d3�s, Z� � sin�y�s, Z�� cos�f�s, Z��i� sin�y�s, Z�� sin�f�s, Z��j� cos�y�s, Z��k:
�132�

Of particular relevance to drill-string dynamics are the so called whirling
excitations in which, besides ¯exural and torsional motions, the transverse
components of the line of centroids of the drill-string are stationary in a vertical
plane rotating about a vertical axis [16]. If the system is unstable under whirling
perturbations about the axisymmetric con®gurations discussed above then the
drill-string can impact with the borehole at different points along its length
triggering lateral wave motion that can generate bit-bounce. Attempts to rectify
this can then set up a new cycle of the torsional instabilities discussed above.
(This phenomenon is explored in section 13.)
A whirling perturbation about the static con®guration takes the form

R�s, Z� � eX�s� cos�OZ�i� eX�s� sin�OZ�j� �gs2=2ÿ s� eZ�s, Z��k, �133�
where the lateral displacement X(s) takes place in a vertical plane rotating about
k with ®xed angular speed, O. If this speed coincides with the steady rotary
speed of the drill-string about the Euler angle f is perturbed according to

f�s, Z� � OZ� eF�s, Z�, �134�
then the motion is known as rotary-synchronous whirl. A consistent linearisation
now follows with

c�s, Z� � p� eC�s, Z�, y�s, Z� � p� eY�s�: �135, 136�
The perturbed directors take the form:
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d1�s, Z� � �cos�OZ� � e sin�OZ��C�s, Z�� ÿ F�s, Z��i
� �sin�OZ� ÿ e cos�OZ��C�s, Z�� ÿ F�s, Z��jÿ eY�s�k, �137�

d2�s, Z� � �sin�OZ� � e cos�OZ��F�s, Z�� ÿC�s, Z��i
ÿ �cos�OZ� � e sin�OZ��F�s, Z�� ÿC�s, Z��j �138�

d3�s, Z� � ÿeY�s� cos�OZ�iÿ eO�s� sin�OZ�jÿ k �139�
Substituting these equations into (28±32) and (38±43) yields equations for the
perturbations X(s), Z(s, Z), Y(s) and the difference F(s, Z)ÿC(s, Z). In the
absence of viscoelastic damping these take the form:

�@2=@s2�Z�s, Z� ÿ �@2=@Z2�Z�s, Z� � 0, �140�

�I11 � I22��@2=@Z2��FÿC��s, Z� ÿ �@2=@s2��FÿC��s, Z� � 0, �141�

��1ÿ w�gs� w� d
ds
Y�s� � �1ÿ w�gY�s� � X�s�O2 � w d2

ds2
X�s� � 0, �142�

I22�d2=ds2�Y�s� ÿ ��1ÿ w�gks� kw��d=ds�X�s�
ÿ ��wÿ 1�g2ks2 � �1ÿ 2w�gks� kw� I22O2�Y�s� � 0: �143�

The system thus exhibits linearised torsional and axial wave propagation and
gravity modulated ¯exural and Euler±Bernoulli±Kelvin bending modes. As
before these modes are coupled via the linearised boundary conditions. Although
a linearised analysis can be a valuable guide to the domains of stability free of
axial and torsional instabilities in the presence of synchronous whirl the above
modes of excitation by no means exhaust the space of linearised solutions in this
vicinity. For example a class of purely oscillatory vibrations can be obtained
from the perturbations

R�s, Z� � eX�s� sin�oZ�i� �gs2=2ÿ s� eZ�s� sin�oZ��k, �144�

c�s, Z� � p, f�s, Z� � eF�s� sin�oZ�, y�s, Z� � p� eY�s� sin�oZ�,
�145±147�

d1�s, Z� � i� e sin�oZ�F�s�jÿ e sin�oZ�Y�s�k, �148�

d2�s, Z� � ÿj� e sin�oZ�F�s�i, �149�

d3�s, Z� � ÿkÿ e sin�oZ�Y�s�i, �150�
where the shape functions X(s), Z(s), F(s) and Y(s) satisfy the ordinary system
of differential equations:
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�1ÿ w�gY�s� � �1ÿ w��d=dsY�s��gs� X�s�o2

� w�d=ds�Y�s� � w�d2=ds2�X�s� � 0, �151�

�1ÿ w�kY�s�g2s2 � ��2wÿ 1�kY�s� � k�wÿ 1��d=ds�X�s��gs

�Y�s��I22 ÿ kwo2� ÿ kw�d=ds�X�s� � I22�d2=ds2�Y�s�, �152�

o2�I11 � I22�F�s� � �d2=ds2�F�s� � 0, o2Z�s� � �d2=ds2�Z�s� � 0 �153, 154�
Which mode in any of the perturbations above is dominant depends to a great

extent on the initial conditions and the manner in which the drilling process is
controlled in time. Guided by the linearised stability analysis this can be
explored by a non-perturbative approach based on a discretisation of the ®eld
equations and their boundary conditions. Although recourse to numerical
simulation is then inevitable, new insight can be gained on the role played by the
initial conditions in the dynamic evolution of the system. Attention is now
turned to the establishment of a suitable discretisation of the model which can
be used to explore non-perturbative simulations for general con®gurations.

11. REDUCTION TO THE METHOD OF LINES

The integration of the equations (1, 2, 5±7, 11, 12) with (in general dynamic)
boundary conditions poses a number of problems. The large disparity between
magnitudes of the dimensionless parameters in these equations, (appropriate for
a steel drill-string) means that any discretization will inevitable lead to a ``stiff''
system. Furthermore any discretization of the equations of motion should
maintain the preservation of the orthonormality between the directions {dk}
during the evolution. The Euler angle parameterisation of {dk} is unsuitable in
this respect due to the presence of co-ordinate singularities that may not
properly cancel in any numerical approximation. The presence of the Heaviside
functions in some of the boundary conditions suggests that the evolution
requires a piecewise construction. In any discretization to a system of ordinary
differential equations, this raises a delicate question of convergence when using
numerical algorithms that are based on approximating solutions satisfying a
Lipschitz condition. Finally there is the question of ensuring that the choice of
initial conditions is compatible with the boundary conditions for the system.
The ®rst problem is addressed by adopting a spatial discretisation based on

a truncated Fourier representation of the system and using semi-implicit
techniques [33] to integrate the resulting system of ordinary differential
equations. This offers the ability to experiment with different ``stiff'' numerical
integrators and is most appropriate for the discretization of a quasilinear system
of partial differential equations such as (1, 2, 5±7, 11, 12).
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The preservation of the orthonormality of the moving director basis is
effectively maintained by appending to the equations of motion the algebraic
orthonormality conditions

di�s, Z� � dj�s, Z� � dij, �155�

for 1E i, jE 3 thereby transforming the problem into a system of PDAE's
(partial differential±algebraic equations). In order to pursue this approach care
must be exercised in the discretization to ensure that the approximating ordinary
differential±algebraic (ODAE) problem has index one [34].
One approach to handling discontinuous boundary conditions is to regularise

terms such as f(Z)H(f(Z)) by replacing them by suitable smooth approximations.
Such regularizations have been shown to be quite effective in approximating
Coulomb friction under certain conditions [23] although considerable care is
required to adapt the regularization scales involved* in dynamical simulations.
In the simulations discussed in section 13 such regularisations are not required.
The question of compatibility of initial data with the boundary conditions is

solved at the level of the spatially discretized system by using a Fourier
representation of the data. This has the added advantage that fast Fourier
transform algorithms can then be employed.
In the following section a brief outline is given of how these techniques are

implemented in practice.

12. DISCRETIZATION

Suppose, for some integer N, a : ZN 74 C is a complex function de®ned on the
integers modulo N. Thus ap= ap+N for 0E pENÿ 1 say. Recall that the
discrete Fourier transform of a is given by

h` �
XNÿ1
p�0

ap exp i
2pp`
N

� �
, �156�

for 0E pENÿ 1. The transform is now N-periodic h`= h`+N and it follows
that

ap � 1

N

XNÿ1
`�0

h` exp ÿi 2pp`
N

� �
: �157�

where 0E `ENÿ 1. Since one is concerned with real valued h`
<�aNÿp� � <�ap�;=�aNÿp� � ÿ=�ap� and hence for N even

*The scale of the simple regularization 1
2( f (Z)+

����������������������
f�Z�2 � e2�

q
for f(Z)H( f (Z)) is set by the small

parameter e.



150 R. W. TUCKER AND C. WANG

h` �
XNÿ1
p�0
<�ap� cos 2pp`

N

� �
ÿ=�ap� sin 2pp`

N

� �� �

� <�a0� � 2
XN=2ÿ1
p�1

<�ap� cos 2pp`
N

� �
ÿ =�ap� sin 2pp`

N

� �� �
� <�aN=2� cos�p`�:

�158�

By contrast if u :S1 74 C is a complex function on the unit circle it may be
represented as

u�y� �
Xk�1
k�ÿ1

~uk exp�iky�, �159�

where

~uk � 1

2p

�2p
0

u�y� exp�ÿiky� dy: �160�

If u is sampled at points yj=2pj/N for 0E jENÿ 1 and the data u(yj) used to
de®ne

~uNk �
1

N

XNÿ1
j�0

u�yj� exp�ÿikyj�, �161�

it follows that

~uNk � ~uk � ~uk2N � ~uk22N � � � � , �162�

This result implies that for suf®ciently large N the discrete Fourier transform ~uNk
of a sampled sequence {u(yj)} of a smooth periodic function provides a
discretisation of u that approximates ~uk for 0E kENÿ 1.
For a real periodic function h de®ned on 0EsE 1 let

h` � h�s`�, �163�

where

s` � 1=2N� `=N �164�

for integers 1E `EN. In terms of

^̀�s� � Nsÿ 1
2, �165�

the data {h(s`)} gives rise to a periodic extension ĥ of h
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ĥ�s� :� <�a0� � 2
XN=2ÿ1
p�1

<�ap� cos 2pp^̀�s�
N

 !
ÿ =�ap� sin 2pp^̀�s�

N

 !" #

�<�aN=2� cos�p^̀�s�� �
XN=2
p�1

âp sin�2pps� �
XN=2ÿ1
p�0

b̂p cos�2pps�, �166�

where

b̂0 � <�a0�, âN=2 � <�aN=2�, �167, 168�

b̂p � 2<�ap� cos�pp=N� � 2=�ap� sin�pp=N� for 1EpEN=2ÿ 1 �169�

âp � 2<�ap� sin�pp=N� � 2=�ap� cos�pp=N� for 1EpEN=2ÿ 1: �170�
The basic assumption now is that some function f(s) representing initial data

(which of course need not be periodic on 0EsE 1) be approximated by such an
extension plus a polynomial in s of suitable degree. De®ning

h�s� � f �s� ÿ
XQ
q�1

cq�2sÿ 1�q, �171�

for some positive integer Q, let the coef®cients of the polynomial cq be given by
the Q equations

Dj�h��0� � Dj�h��1�, �172�
for 0E jEQÿ 1. If f is smooth these conditions mean that at least h and its ®rst
Qÿ 1 derivatives are smooth functions on the unit interval with periodic Fourier
extensions. Thus with N=2m for some positive integer m, the results above
enable one to approximate f by

f̂ �s� :� ĥ�s� �
XQ
q�1

cq�2sÿ 1�q, �173�

using fast Fourier transform algorithms. The choice of Q is dictated by the
degree of smoothness of the initial data and the extent to which it is desired that
f̂ be compatible with the boundary conditions and equations of motion (see
below).
In order to succinctly present the discretisation algorithm used to reduce the

partial differential equations (1, 2, 5±7, 11, 12) with boundary conditions to an
ordinary differential system it is convenient to denote all functions of the two
independent variables s and Z by {fk} (1E kEK). Furthermore dynamic
functions of Z that enter into the boundary conditions at s=0 and s=1 are
denoted collectively by {Lr

0(Z)}, 1E rEE0 and {Lu
1(Z)}, 1E uEE1 respectively.

A system of K coupled partial differential equations is then denoted
collectively by
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Pj�. . . , @ms @
n
Zfk�s, Z�, . . .� � 0, �174�

it being understood that the displayed argument is generic; not every equation
need involve all functions of the two independent variables. In a similar way the
boundary conditions may be written as:

F a
0�. . . , @ms @

n
Zfk�0, Z�, . . . , @sZL

r
0�Z�, . . .� � 0, �175�

F b
1�. . . , @ms @

n
Zfk�1, Z�, . . . , @vZL

u
1�Z�, . . .� � 0, �176�

where 1E aEH0, 1E bEH1 and H0+H1=H, it being understood again that
the arguments are generic. The basic spatial discretisation rule now follows from
the discussion above. Each fk is approximated by a polynomial in s` plus a
discrete Fourier series with Z dependent coef®cients:

f̂k�s`, Z� �
XN=2
p�1

Akp�Z� sin�2pps`� �
XN=2ÿ1
p�0

Bkp�Z� cos�2pps`�

�
XQk

q�1
Ckq�Z��2s` ÿ 1�q, �177�

where 0E `EN+1 and the N+2 sampled spatial points s` are de®ned by
s0=0, sN+1=1 and s`=1/2N+ `/N for 1E `EN so that the partial
differential equations are sampled at the two end points s=0 and s=1 as well
as at N interior points. In terms of

P̂ j
`�. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . .�

� P j�. . . , @ms @
n
Zfk�s`, Z�, . . .�, �178�

F̂ a
0 �. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . . , @sZL

r
0�Z�, . . .�

� F a
0�. . . , @ms @

n
Zf̂k�0, Z�, . . . , @sZL

r
0�Z�, . . .�, �179�

F̂ b
1 �. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . . , @vZL

u
1�Z�, . . .�

� F b
1�. . . , @ms @

n
Zf̂k�1, Z�, . . . , @vZL

u
1�Z�, . . .�, �180�

this discretization gives rise to the following system of NK+2K+H equations

P̂ j
`�. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . .� � 0, �181�

F̂ a
1 �. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . . , @sZL

r
0�Z�, . . .� � 0, �182�

F̂ b
0 �. . . , @nZAkp�Z�, . . . , @nZBkp�Z�, . . . , @nZCkq�Z�, . . . , @vZL

u
1�Z�, . . .� � 0, �183�



DRILL-STRING DYNAMICS 153

for the KN+
PK

k�1 Qk+E0+E1 functions {Akp(Z), Bkp(Z), Ckp(Z), Lr
0(Z), L

u
1(Z)}.

If the powers of the polynomials in (177) are such thatXK
k�1

Qk � 2K�Hÿ E0 ÿ E1, �184�

then the number of unknown functions balances with the number of equations
(181)±(183). In the special (decoupled) case where each fk appears in only one
partial differential equation and is required to satisfy Hk boundary conditions
then H=SK

k�1 Hk+E0+E1. A natural choice for Qk satisfying (199) in this
case is

Qk � Hk � 2: �185�
and this is found to be adequate in the general case as well.
Once the basic counting of equations is established the above system can be

rewritten in ®rst order form appropriate for numerical integration. This is
readily accomplished since the basic equations of the model are quasilinear. The
discretisation (189) is designed so that the initial conditions {Akp(0), Bkp(0),
Ckq(0)} can be read off from the Fourier transform of the initial data (183). The
remaining initial data for the numerical integration is provided by {Lr

0�0�;Lu
1�0�}

when required. Taking into account the caveats above the system can be
extended to a differential±algebraic system by appending the orthonormality
conditions (167).

13. LATERAL WHIRL AND INTERACTION WITH THE BORE-LINER

The mathematical model described in this article can be used in conjunction
with various assumptions and approximations. As shown in sections 7±10, when
combined with data on frictional interactions and external control torques it
yields valuable insights into the inter-relations between torsional and axial
vibrations and their effects on the stability of drilling operations. The authors
have shown elsewhere that the volatilities suffered by traditional so called ``soft-
torques'' devices* can be understood by taking into account the continuum
nature of the drill-string. The model also suggests alternative control strategies
(``torsional recti®cation'') that can be fully tested in this context and are shown
to be superior for the suppression of torsional ``slip±stick'' [19]. The model has
also been used to gain insight into ``snap-buckling'' due to non-linear ¯exural
excitations of the drill-string [35]. The interaction of the drill-string with the bore
cavity is another potentially hazardous problem for the drilling engineer. Field
evidence suggests that if a rotating drill-bit is suddenly arrested (in its
translational motion at the rock face) then rapid whirling of the drill-string can
occur. The energy transferred to this motion can result in catastrophic collisions
of the drill-string with the sides of the bore-hole before rotary control sensors at
the top-drive can adjust the drive torque. To explore this phenomenon the model

*Designed to combat the destructive nature of torsional relaxation oscillations.
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must be allowed to excite both axial, torsional and lateral degrees of freedom
subject to a choice of boundary conditions.
The following six pictures arise as a result of such a simulation in which a

drill-bit at the end of a 3000 m drill-string is assumed ®xed in its translational
motion in contact with the rock surface, while the top-drive is rotating. The
drill-string is initially slightly displaced in the j-k plane as shown in the ®rst
picture at time Z=0 in Figure 9. The other pictures in this ®gure display the
con®guration of the drill-string as viewed from the top at subsequent times.
When the curve representing the centroid of the drill-string touches the
circumference of the shaded circle the physical drill-pipe is then in contact with
the steel bore-liner at that point. The sequence indicates that a collision with the
bore-liner occurs after about two seconds and another after about six seconds.
Figures 10 and 11 display the associated i and j components of the velocity of
the drill-string during this period. The effects of the impact are clearly visible in
Figures 12 and 13. These display the reaction experienced by the drill-string at
the BHA. At about two and six seconds into the simulation both the i and j
components of this reaction increase in both magnitude and frequency. Such
signals should be readily detectable and might be used as input in a suitably
designed feedback device that controls ¯uid pressures in the environment of the
drill-string. Figure 14 displays the vertical k component of the reaction force on
the drill-bit (dynamic ``weight-on-bit'') relative to the top-tension at the rotary.
The full dynamic history of the axial vibration speed in the drill-string is
displayed in Figure 15 and is commensurate with the ¯uctuating ``dynamic
weight on bit'' in the previous ®gure. It is of interest to note the difference in
frequency between the axial and lateral vibration in this phase of the evolution,
most of the activity residing in the lateral whirling motion of the drill-string.

=0=0 =2.14

=5.59=4 =6.45

Figure 9. The six pictures in this ®gure arise from a simulation in which a drill-bit at the end
of a 3000 m drill-string is assumed ®xed in its translational motion, in contact with the rock sur-
face, while the top-drive is rotating. At time Z=0 the drill-string is initially slightly displaced in
the j-k plane as shown in the ®rst picture (side view, not to scale, with the drill-bit at the bottom).
The other pictures in this ®gure display the con®guration of the drill-string as viewed from the
top at subsequent times. When the curve representing the centroid of the drill-string touches
the circumference of the shaded circle the physical drill-pipe is then in contact with the steel bore-
casing at that point. The sequence shows a whirling drill-string in collision with the bore-casing
after about two and then six seconds.
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Figure 10. i component of the velocity of the drill-string during the period in which the drill-
string impacts twice with the bore-liner.
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Figure 11. j component of the velocity of the drill-string during the period in which the drill-
string impacts twice with the bore-liner.
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Figure 12. i component of the constraining reaction between the drill-string and the BHA during
the period in which the drill-string impacts twice with the bore-liner after about Z=2 and Z=6
seconds. At each impact there is an increase in the magnitude and frequency of the vibration.
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Figure 13. j component of the constraining reaction between the drill-string and the BHA during
the period in which the drill-string impacts twice with the bore-liner after about Z=2 and Z=6
seconds. At each impact there is an increase in the magnitude and frequency of the vibration.
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Figure 14. k component of the reaction force (� � � � � �) on the drill-bit (``weight-on-bit'') relative
to the top-tension at the rotary (Ð) during the period in which the drill-string impacts twice with
the bore-liner after about Z=2 and Z=6 seconds. Note the difference in frequency between the
axial and lateral vibration in this phase of the evolution.
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Figure 15. The full dynamic history of the axial vibration speed in the drill-string during the
period in which the drill-string impacts twice with the bore-liner.
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14. CONCLUSIONS

Some of the dynamical properties of the active components of a drilling
assembly have been described above in terms of a simple Cosserat model. It is
stressed that all the equations of motion arise from the ``geometrically exact''
vector equations (1) and (2) together with a prescription of constitutive relations
and external forces and torques. Many of the approximations in the literature
can be readily derived from such a model. However with a little extra effort the
inclusion of axial, lateral and torsional interactions can be fully accommodated
with realistic boundary conditions and the domain of validity of numerous
approximations deduced more reliably. The model has been used in this paper to
discuss the stability of vertical axi-symmetric con®gurations under both coupled
torsional, axial and lateral perturbations. In the axi-symmetric con®guration a
novel reduction to a system of coupled differential±difference equations is
possible. This offers a means of exploring non-perturbative vibrational states
with higher resolution than is normally possible by numerical analysis of coupled
partial differential equations. Such simulations have demonstrated the
limitations inherent in the neglect of axial vibrations in the detection and control
of torsional relaxation oscillations. For non-axisymmetric con®gurations an
account has been given of the use of fast Fourier transform techniques in the
establishment of a new discretisation approach that may be used to integrate the
model under a wide variety of initial conditions. These have included a study of
non-perturbative coupled vibrational states under extreme conditions of lateral
whirl.
The computations have been coded in MapleV and C++ using recently

developed techniques of automatic differentiation [36]. The former has been used
to generate the equations of motion symbolically and display the data
graphically while the latter was more ef®cient for the numerical work. The
calculations were performed on an Alpha workstation. The simulations discussed
in Section 13 were the most computationally intensive of those presented in this
paper. The C++ calculations leading to Figures 8±14 took 120 min.
As a result of these computations the authors believe that the integrated

model discussed above has a wide domain of applicability. The model can be
extended in a number of ways to include more realistic interactions of the drill-
string and BHA with their environments. It could also be useful for investigating
the vortex induced vibration of marine risers in shear ¯ow that are responsible
for instabilities that occur in off-shore drilling operations. It offers practical
guides to engineering problems [7, 19, 27, 35] and provides an ef®cient means of
gaining both detailed information and broad insights into the delicate dynamical
behaviour associated with ``strings'' with attachments.
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APPENDIX 1

A.1.1 CONVERSION OF DIMENSIONLESS VARIABLES TO DIMENSIONED VARIABLES

Acceleration of gravity g 74 g(r0L0/E)
Body force per unit unstressed length of rod f 74 f L0/(EA)
Body torque per unit unstressed length of rod 1 74 1L0/G
Rod location R 74 R/L0

Local director angular velocity w 74 wT0

Contact force n 74 n/(EA)
Natural torque unit G=GKaa/L0

Natural reference speed C=
�����������
E=r0

p
Contact torque m 74 m/G
Extension and shear strain vector v 74 v
Flexure and torsional strain vector u 74 uL0

Rod rotary inertia tensor per unit reference length rI 74 rIL0/�T2
0G�

Director components of rod rotary inertia tensor Ijk 74 Ijkc
2/(GKaa)

per unit reference length
End attached rotary inertia tensor JTik 74 JTik=�T2

0G�
End attached mass mT 74 mTc2/(EAL0)
End external force Fext 74 Fext/(EA)
End external torque Lext 74 Lext/G
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A.1.2 NUMERICAL DATA

Operational tensions in the top cable vary considerably but a typical value is
3000 KN or 675 kip. Average ``weight-on-bit'' values vary up to 250 kN or 65
kip. The following typical values have been used to generate the dimensionless
parameters used in the numerical simulations.

TABLE 1

Variable Symbol MKS value MKS dimension

Mass density r 8�0096 103 MLÿ3

Sectional area A 3�46 10ÿ3 L2

Young's modulus E 0�2076 1012 MLÿ1T ÿ2

Shear modulus G 0�7966 1011 MLÿ1T ÿ2

Torsional rigidity D 9�4616 105 ML3T ÿ2

Reference lengths L0 (3±6) 103 L

Reference torque G 2�96 102 ML2T ±2

Reference speed c 5�0846 103 LT ÿ1

Reference intervals T0 0�6±1�2 T

Axial speed ca 5�0846 103 LT ÿ1

Torsional speed ct 3�1526 103 LT ÿ1

Rotary inertia I11 4�76 10ÿ2 ML

Rotary inertia I22 4�76 10ÿ2 ML

Rotary inertia I33 9�56 10ÿ2 ML

Rotary inertial JT33 5�436 102 ML2

Rotary inertia JB33 4�466 102 ML2

Inertia term Kaa 1�196 10ÿ5 L4

Effective mass mT 5�086 104 M

Effective mass mB 56 103 M

String weights W (0�8±1�6)6 107 MLT ÿ2

Control parameter kp 7�56102 ML2T ÿ2

Control parameter ki 51
ML2T ÿ2
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APPENDIX 2

A.2.1 REDUCTION TO COUPLED RETARDED DIFFERENTIAL±DIFFERENCE EQUATIONS

This appendix outlines the method used to reduce the non-linear boundary
value problem for a system of linear wave equations in two independent
variables to an equivalent system of non-linear retarded functional (differential±
difference) equations in one independent variable. This reformulation offers
computational advantages in the numerical analysis of such systems.
Suppose {fk} (k=1, 2, . . .) satisfy on 0EsE 1 the 2-dimensional wave

equations:

�fk�s, Z� � b2kf00k�s, Z�, �A:2:1�
where {bk} denote constant wave speeds. The general solutions to (A.2.1) are:

fk�s, Z� � Lk�s� bkZ� � Rk�sÿ bkZ�, �A:2:2�
for functions {Lk, Rk}. Differentiating (A.2.2) with respect to Z gives

_fk�s, Z� � bk _Lk�s� bkZ� ÿ bk _Rk�sÿ bkZ�: �A:2:3�
From (A.2.2) the ``left-moving wave'' Lk(u) and ``right-moving wave'' Rk(u) are
determined up to the addition of constants. Adopting Lk(0)=Rk(0), substituting
Z=0 into (A.2.3) and integrating over s yields

1

bk

�u
0

_fk�v, 0� dv � Lk�u� ÿ Rk�u�: �A:2:4�

It follows from (A.2.4) and by substituting Z=0 into (A.2.2) that Lk(u) and
Rk(u) may be expressed as:

Lk�u� � 1
2fk�u, 0� �

1

2bk

�u
0

_fk�v, 0� dv, �A:2:5�

Rk�u� � 1
2fk�u, 0� ÿ

1

2bk

�u
0

_fk�v, 0� dv, �A:2:6�

in terms of the initial wave con®gurations fk(s, 0) and the initial time derivatives
_fk(s, 0).
At junctions s=0 and s=1 the waves are subject to sets of dynamic

boundary conditions depending on fk(s, Z) and their partial derivatives
evaluated at s=0 and s=1 respectively. In addition a set of ``dynamic
functions'' {Fi(Z)} satisfying a set of prescribed ordinary differential equations
may also enter the boundary conditions.
The method of reduction to functional equations will be illustrated for a

system of two waves {f1(s, Z), f2(s, Z)} satisfying wave equations (A.2.1) for
0EsE 1 and two dynamic functions {F1(Z), F2(Z)} that also couple through the
boundary conditions:

_f1�0, Z� � A1�f1�0, Z�, f2�0, Z�, F1�Z��, �A:2:7�
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f02�0, Z� � A2�f1�0, Z�, f2�0, Z�, F1�Z��, �A:2:8�

_F1�Z� � C1�f1�0, Z�, f2�0, Z�, F1�Z��, �A:2:9�
at junction s=0 and

f02�1, Z� � B1�f1�1, Z�, f2�1, Z�, F2�Z��, �A:2:10�

_f2�1, Z� � B2�f1�1, Z�, f2�1, Z�, F2�Z��, �A:2:11�

_F2�Z� � C2�f1�1, Z�, f2�1, Z�, F2�Z��, �A:2:12�
at junction s=1, for some functions A1, A2, B1, B2, C1, C2.
Inserting (A.2.2) into (A.2.7)±(A.2.12) yields the following functional

differential equations:

_F1�Z� � C1�L1�b1Z� � R1�ÿb1Z�, L2�b2Z� � R2�ÿb2Z�, F1�Z�� �A:2:13�

_F2�Z� � C2�L1�1� b1Z� � R1�1ÿ b1Z�, L2�1� b2Z� � R2�1ÿ b2Z�,F2�Z��,
�A:2:14�

b1 _L1�b1Z� ÿ b1 _R1�ÿb1Z�
� A1�L1�b1Z� � R1�ÿb1Z�, L2�b2Z� � R2�ÿb2Z�, F1�Z��, �A:2:15�

_L2�b2Z� � _R2�ÿb2Z� � A2�L1�b1Z� � R1�ÿb1Z�, L2�b2Z� � R2�ÿb2Z�, F1�Z��,
�A:2:16�

_L1�1� b1Z� � _R1�1ÿ b1Z�
� B1�L1�1� b1Z� � R1�1ÿ b1Z�, L2�1� b2Z� � R2�1ÿ b2Z�, F2�Z��, �A:2:17�

b2 _L2�1� b2Z� ÿ b2 _R2�1ÿ b2Z�
� B2�L1�1� b1Z� � R1�1ÿ b1Z�, L2�1� b2Z� � R2�1ÿ b2Z�, F2�Z��: �A:2:18�
The structure of the above equations can be greatly simpli®ed by performing

changes of variables according to different ranges of Z. To this end introduce,
for i, /, k=1, /, 2:

F i,1�Z� � Fi�Z�, F i,0�Z� � Fi�ÿZ�, for Ze0 �A:2:19, 20�
and

Lk,1�Z� � Lk�bkZ� 1�, Lk,0�Z� � Lk�ÿbkZ�, �A:2:21, 22�

Rk,1�Z� � Rk�bkZ� 1�, Rk,0�Z� � Rk�ÿbkZ� �A:2:23, 24�
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for Zeÿ1/bk. In terms of these functions the equations (A.2.13±18) together
with those obtained by replacing Z by ÿZ take the following form:

_F 1,0�Z� � ÿC1�L1,0�Z� � R1,1�Zÿ 1=b1�, L2,0�Z� � R2,1�Zÿ 1=b2�, F 1,0�Z��,
�A:2:25�

_F 2,0�Z� � ÿC2�L1,0�Zÿ 1=b1� � R1,1�Z�, L2,0�Zÿ 1=b2� � R2,1�Z�, F 2,0�Z��,
�A:2:26�

_F 1,1�Z� � C2�L1,1�Zÿ 1=b1� � R1,0�Z�, L2,1�Zÿ 1=b2� � R2,0�Z�, F 1,1�Z��,
�A:2:27�

_F 2,1�Z� � C2�L1,1�Z� � R1,0�Zÿ 1=b1�, L2,1�Z� � R2,0�Zÿ 1=b2�, F 2,1�Z��,
�A:2:28�

_L1,0�Z� � ÿ _R1,1�Zÿ 1=b1�
ÿ A1�L1,0�Z� � R1,1�Zÿ 1=b1�, L2,0�Z� � R2,1�Zÿ 1=b2�, F 1,0�Z��,

�A:2:29�

_R1,0�Z� � ÿ _L1,1�Zÿ 1=b1�
� A1�L1,1�Zÿ 1=b1� � R1,0�Z�, L2,1�Zÿ 1=b2� � R2,0�Z�, F 1,1�Z��,

�A:2:30�

_L2,0�Z� � _R2,1�Zÿ 1=b2�
ÿ b2A2�L1,0�Z� � R1,1�Zÿ 1=b1�, L2,0�Z� � R2,1�Zÿ 1=b2�, F 1,0�Z��,

�A:2:31�

_R2,0�Z� � _L2,1�Zÿ 1=b2�
ÿ b2A2�L1,1�Zÿ 1=b1� � R1,0�Z�, L2,1�Zÿ 1=b2� � R2,0�Z�, F 1,1�Z��,

�A:2:32�

_L1,1�Z� � _R1,0�Zÿ 1=b1�
� b1B1�L1,1�Z� � R1,0�Zÿ 1=b1�, L2,1�Z� � R2,0�Zÿ 1=b2�, F 2,1�Z��,

�A:2:33�

_R1,1�Z� � ÿ _L1,0�Zÿ 1=b1�
� b1B1�L1,0�Zÿ 1=b1� � R1,1�Z�, L2,0�Zÿ 1=b2� � R2,1�Z�, F 2,0�Z��,

�A:2:34�
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_L2,1�Z� � ÿ _R2,0�Zÿ 1=b2�
� B2�L1,1�Z� � R1,0�Zÿ 1=b1�, L2,1�Z� � R2,0�Zÿ 1=b2�, F 2,1�Z��,

�A:2:35�

_R2,1�Z� � ÿ _L2,0�Zÿ 1=b2�
ÿ B2�L1,0�Zÿ 1=b1� � R1,1�Z�, L2,0�Zÿ 1=b2� � R2,1�Z�, F 2,0�Z��:

�A:2:36�
Equations (A.2.25±36) constitute a system of difference±differential equations
with retardations {1/bk}. The required data to integrate this system from Z=0
to Z= Zmaxe 0 is {F i,0(0), F i,1(0)} together with the function values of {Lk,0(Z),
Rk,0(Z), Lk,1(Z), Rk,1(Z)} on ÿ1/bkE ZE 0.
Indeed using the transformation relations (A.2.19) and (A.2.20) the values of

{F i,0(0), F i,1(0)} can be evaluated from the initial data for F i(Z)} at Z=0. Given
initial conditions for the waves fk(s, 0) and _fk(s, 0) on 0E sE 1 that are
consistent with the boundary conditions (A.2.7), (A.2.8), (A.2.9) and (A.2.11),
relations (A.2.5) and (A.2.6) can be used to calculate {Lk(s), Rk(s)} on
0EsE 1, which in turn yields the function values of {Lk,0(Z), Rk,0(Z), Lk,1(Z),
Rk,1(Z)} on ÿ1/bkE ZE 0 by virtue of the transformation relations (A.2.21±24).
To recover the evolution of the waves {f1, f2} and the functions {F1, F2}

consider the transformations reciprocal to equations (A.2.19±24). Provided the
solutions for {F i,0(Z), F i,1(Z), Lk,0(Z), Rk,0(Z), Lk,1(Z), Rk,1(Z)} exist in the range
0E ZE Zmax the functions {Fi(Z)} can be evaluated for ÿZmaxE ZEZmax
according to

Fi�Z� � F i,1�Z�, for Ze0 �A:2:37�
and

Fi�Z� � F i,0�ÿZ�, �A:2:38�
for ZE 0. The left-moving and right-moving waves can also be evaluated as:

Lk�Z� � Lk,1�Z=bk ÿ 1=bk�, Rk�Z� � Rk,1�Z=bk ÿ 1=bk� �A:2:39, 40�
for ÿbkZmaxE ZE 0 and

Lk�Z� � Lk,0�ÿZ=bk�, Rk�Z� � Rk,0�ÿZ=bk�, �A:2:41, 42�
for 0E ZE bkZmax+1. Combining the left-moving and right-moving waves
using (A.2.2) then yields the wave functions fk(s, Z) on 0EsE 1 and
ÿZmaxE ZE Zmax.
The boundary problem can therefore be analysed in terms of a system of

retarded difference±differential equations. The generalisation to an arbitrary
number of waves and dynamic functions follows along similar lines and
naturally lends itself to algebraic computation.


	1. INTRODUCTION
	Figure 1.

	2. EQUATIONS OF MOTION
	3. STATIC CONFIGURATIONS
	4. BOUNDARY CONDITIONS
	5. INTERACTIONS WITH THE BORE CAVITY
	6. FRICTION
	Figure 2.

	7. THE AXI-SYMMETRIC SECTOR
	Figure 3.
	Figure 4.

	8. REDUCTION TO DIFFERENTIAL DELAY EQUATIONS
	Figure 5.

	9. FLEXURAL STABILITY
	Figure 6.
	Figure 7.
	Figure 8.

	10. ROTARY-SYNCHRONOUS WHIRL
	11. REDUCTION TO THE METHOD OF LINES
	12. DISCRETIZATION
	13. LATERAL WHIRL AND INTERACTION WITH THE BORE-LINER
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.

	14. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX 1
	A.1.1 CONVERSION OF DIMENSIONLESS VARIABLES TO DIMENSIONED VARIABLES
	A.1.2 NUMERICAL DATA
	TABLE 1


	APPENDIX 2
	A.2.1 REDUCTION TO COUPLED RETARDED DIFFERENTIAL±DIFFERENCE EQUATIONS


